The Dynamics of Accounting and Financial Information for Valuation of Securities

Document Type : Review Paper

Authors

1 Ph.D. student of Accounting, Faculty of Management and Economics, Tarbiat Modarres University

2 Associate Professor of Accounting, Faculty of Management and Economics, Tarbiat Modarres University

Abstract

Dynamics have been used in various fields in different ways to present "processes of changes, instabilities, contrasts and or equilibriums in forces". Recently, studies on dynamics in accounting have been significant advances. Now, the question is in current environmental and technological conditions, which patterns and models can be used for dynamics in accounting information? Which kinds of dynamics models are the accounting researches' tendency? For this purpose, information and documents have been collected by reviewing past researches into the dynamics of the various sciences. The situations, environments and subjects of the research require to apply certain types of dynamics models for accounting information. We will discuss dynamics concepts used in accounting and financial sciences with noting some models, functions and stochastic processes. Appreciating the concepts and theories of dynamics information can help to standards setting, select procedures, and examine the effects of released information on the behavior of groups and investors. 

Keywords

Main Subjects


بالونژاد نوری، روزبه؛ جعفری صمیمی، احمد. (1393). کاربرد روش موجک‌ها و حرکت براونی کسری در آزمون فرضیۀ کارایی ضعیف بورس و اوراق بهادار تهران. فصلنامه تحقیقات مدلسازی اقتصادی. شماره 17. صص. 29- 56.
رضایی دولت آبادی، حسین؛ مهرآذین، سمیرا. (1392). تحلیل نقش حسابداری مدیریت در ایجاد مزیت رقابتی برای سازمان‌ها، در محیط‌های متغیر و پویا. پژوهش حسابداری. شماره 8. صص. 89 - 99
رهنمای رودپشتی، فریدون؛ کلانتری دهقی، مهدیه. (1393). مدل‌های مولتی فرکتال در علوم مالی: ریشه، ویژگی‌ها و کاربردهای آنها. فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار. سال هفتم. شماره 24. صص 25 – 47.
قبادیان، وحید. (1384). مبانی و مفاهیم در معماری معاصر غرب. نشر، دفتر پژوهش‌های فرهنگی تعداد صفحات، 194. صص ۱۶۶-۱۶۷
کمیجانی، اکبر؛ سعادت فر، جواد. (1385). کاربرد مدل‌های شبکه عصبی در پیش بینی ورشکستگی اقتصادی شرکت‌های بازار بورس. جستارهای اقتصادی. دورهشماره 6. صص. 11 – 44. دریافت شده از: http: //fa. journals. sid. ir/
مروت، حبیب. (1391). آزمون فرضیه بازار فراکتالی در بورس اوراق بهادار تهران. فصلنامه بورس اوراق بهادار. سال 5. شماره 19. صص. 5 – 25.
مکیان، سید نظام الدین؛ المدرسی، سید محمد تقی؛ کریمی تکلو، سلیم. (1388). مقایسه مدل شبکه‌های عصبی مصنوعی با روش‌های رگرسیون لجستیک و تحلیل ممیزی در پیش بینی ورشکستگی شرکت‌ها. پژوهش‌های اقتصادی. دوره 10، شماره 2. صص. 141 – 161. دریافت شده از: http: //ecor. modares. ac. ir/
هیلیر، فردریک؛ لیبرمن، جرالد. (1382). تحقیق در عملیات. ترجمه محمد مدرس و اردوان آصف‌وزیری. تهران: نشر جوان، چاپ دهم
Akansu, A. N. ; Torun Torun, M. U. (2015). A Primer for Financial Engineering. 1st Ed. Academic Press. Pp. 52–80
Armstrong, P. (1991). Contradiction and social dynamics in the capitalist agency relationship. Accounting, Organizations and Society. Vol. 16, Issue 1. pp. 1–25.
Ashton D. , T. Cooke, M. Tippett and P. Wang. (2004). Linear information dynamics, aggregation, dividends and ‘dirty surplus’ accounting. Accounting and Business Research. Vol. 38 (2) , pp. 271–95.
Ashton D. and P. Wang (2008). Valuation Weights and Accounting Conservatism. Available at SSRN: http: //ssrn. com/abstract=1156490.
Ashton D. and Wang P. (2008). Valuation Weights and Accounting Conservatism. Available at SSRN: http: //ssrn. com/abstract=1156490.
Backstrom, L. ; Huttenlocher, D. ; Kleinberg, J. ; Lan, X. (2006). Group formation in large social networks. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 44-54.
Basu, S. (1997). The Conservatism Principle and the Asymmetric Timeliness of Earnings. Journal of Accounting and Economics. Vol. 24, pp. 3–37.
Bhargava, A. (2014). Firms' fundamentals, macroeconomic variables and quarterly stock prices in the US. Journal of Econometrics, Vol. 183, 241-250
Bowlby, J. (1999). Attachment and Loss: Vol I, 2nd Ed. Basic Books. pp. 13–23.
Burnetas, A. N. ; Katehakis, M. N. (1997). Optimal Adaptive Policies for Markov Decision Processes. Mathematics of Operations Research. Vol. 22 (1). Pp. 222-255.
Cacioppe, R. ; Edwards, M. (2005). Seeking the Holy Grail of organisational development. Leadership & Organization Development Journal. Vol. 26. Issue 2. pp. 86 – 105
Castillo, O. ; Melin, P. (1995). An intelligent system for financial time series prediction combining dynamical systems theory, fractal theory, and statistical methods. Computational Intelligence for Financial Engineering. Conference IEEE. Pp. 151 – 155.
Caswell, H. (2001). Matrix population models: Construction, analysis and interpretation. 2nd Ed. Sinauer Associates, Sunderland, Massachusetts.
Clower, R. W. (1954a). An Investigation into the Dynamics of Investment. American Economic Review. 44 (l) , pp. 64–81.
Clower, R. W. (1968). Stock-flow analysis. International Encyclopedia of the Social Sciences. Vol. 12.
Clubb, C. (2012). Information Dynamics, Dividend Displacement, Conservatism and Earnings Measurement: A Development of the Ohlson (1995) Valuation Framework. Review of Accounting Studies. Vol. 18 (2).
Cooley, T. F. ; Quadrini, V. (2001). Financial Markets and Firm Dynamics. The American Economic Review. Vol. 91, No. 5, pp. 1286-1310
Cordero, F. ; Perez-Ostafe, L. (2015). Strong asymptotic arbitrage in the large fractional binary market. Mathematics and Financial Economics. Springer. Pp. 1-24.
Corsini, R. J. , & Wedding, D. (2008) Current Psychotherapies. 8th Ed. Belmont, CA. Thomson Brooks/Cole. pp. 15-17.
Cox D. R. (1962). Renewal Theory. Monographs on Applied Probability and Statistics. (Methuen young books, London)
Dalton, D. R. ; Daily, C. M. ; Johnson, J. L. ; Ellstrand, A. E. (1999). Number of Directors and Financial Performance: A Meta-Analysis. The Academy of Management Journal. 42 (6). Pp. 674-686.
De Farias, D. P. , Van Roy, B. (2003). The Linear Programming Approach to Approximate Dynamic Programming. Operation Research. Vol. 51, Issue 6. Pp. 850 – 865.
Doran, C. Lasenby, A. N. (2003). Geometric Algebra for Physicists. Cambridge University Press. p. 54.
Durlauf, S. ; Young, P. (2001). Social Dynamics. Cambridge, MA: MIT Press.
Fama, E. F. (1965). Random Walks in Stock Market Prices. Financial Analysts Journal. 21 (5) pp. 55–59.
Feltham G. and J. Ohlson (1995). Valuation and Clean Surplus Accounting for Operating and Financial Activities. Contemporary Accounting Research. Vol. 11 (2) , pp. 689–732.
Feynman, RP; Leighton, RB; Sands, M (2003). The Feynman Lectures on Physics. Vol. 1 (Reprint of 1963 lectures ed. ). Perseus Books Group. Ch. 9 Newton's Laws of Dynamics.
Forrester, J. (1971). Counterintuitive behavior of social systems. Technology Review. 73 (3): 52–68
Forsyth, D. R. (2009). Group Dynamics. New York: Wadsworth
Freud, S. (1923). The Ego and the Id. W. W. Norton & Company. pp. (4–5).
Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive Sciences. Vol. 9. Issue 10. Pp. 474–480.
Gordon MacGregor, J (1887). An Elementary Treatise on Kinematics and Dynamics. Macmillan.
Granlund, M. (2001). Towards explaining stability in and around management accounting systems. Management Accounting Research. Vol. 12, Issue 2, pp. 141–166.
Gray, R. (1992). Accounting and environmentalism: an exploration of the challenge of gently accounting for accountability, transparency and sustainability. Accounting, Organizations and Society. Vol. 17, issue 5. Pp. 399-425.
Hall, Calvin, S. (1954). A Primer in Freudian Psychology. Meridian Book.
Hayes, M. H. (1996). Statistical Digital Signal Processing and Modeling -Recursive Least Squares. Wiley. p. 541.
Heejo L. , Jong K. , Sungje H. , and Sunggu L. (2003). Processor Allocation and Task Scheduling of Matrix Chain Products on Parallel Systems. Parallel and Distributed Systems, IEEE Transactions on Parallel and Distributed Systems. Vol. 14 (4). pp. 394–407.
Hogg, M. A. and Williams, K. D. (2000). From I to We: Social identity and the collective self. Group Dynamics: Theory, Research, and Practice, 4 1: 81-97.
Horowitz, Mardi, J. (1988). Introduction to Psychodynamics - a New Synthesis. Basic Books. p. 3.
Kallenberg, L. (2002). Finite state and action MDPs, in Eugene A. Feinberg, Adam Shwartz (eds. ) Handbook of Markov decision processes: methods and applications, Springer.
Katok, A. , & Hasselblatt, B. (1995). Introduction to the modern theory of dynamical systems. Cambridge.
Kendall, M. G. ; Bradford H. , A (1953). The Analysis of Economic Time-Series-Part I: Prices. Journal of the Royal Statistical Society. A (General) (Blackwell Publishing). Vol. 116 (1): 11–34.
Khamsi, M. A. (2013). Population Dynamics. Sosmath. com.
Lakshmana C. R. ; J. Lakshminarasimhan, R. S. ; Sivakumar, S. M. (2004). Engineering mechanics: statics and dynamics. PHI Learning Pvt. Ltd.
Lakshmikantham, V. ; Leela, S. ; Vasundhara Devi, J. (2009). Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers.
Laloux, L. ; Cizeau, P. ; Potters, M. (2000). Random matrix theory and financial correlations. International Journal of Theoretical and Applied Finance. Vol. 03. Issue 03. P. 391.
Lauer, T. W. ; Peacock, E. (1990). An analysis of comparison questions in the context of auditing. Discourse Processes. Vol. 13, Issue 3. pp. 349-361.
Llinas, R. R. (2014). Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Front. Cell. Neurosci. Vol 8: pp. 320.
Lux, T. and Marchesi, M. (2000). Volatility clustering in financial markets: A microsimulation of interacting agents. International Journal Theoretical Applied Finance. Vol. 3 (4). Pp. 675-702.
Mandelbrot, B. ; Hudson, R. (2004). The (Mis) behavior of Markets: A Fractal View of Risk, Ruin, and Reward.
Mascarenhas, B. (1989). Strategic Group Dynamics. The Academy of Management Journal. 32 (2). pp. 333-352.
Melse, E. (2006). The Financial Accounting Model from a System Dynamics’ Perspective. Available at: http: //ssrn. com/abstract=1081620
Metzler, R. ; Klafter, J. (2000). The random walk's guide to anomalous diffusion: A fractional dynamics approach. Physics Reports. Vol. 339 No. 1. pp. 1–77
Mohacsy, I. ; Lefer, H. (2007). Money and Sentiment: A Psychodynamic Approach to Behavioral Finance. The Journal of the American Academy of Psychoanalysis and Dynamic Psychiatry. Vol. 35. pp. 455-475.
Mörters, P. ; Peres, Y. (2008). Brownian motion (Draft Version). Retrieved 25
Myers, J. (1999). Implementing Residual Income Valuation with Linear Information Dynamics. The Accounting Review. Vol. 74 (1) , pp. 1–28.
Nagurney, A. ; Zhang, D. (1996). On the stability of an adjustment process for spatial price equilibrium modeled as a projected dynamical system. Journal of Economic Dynamics and Control. Vol. 20, Issues 1–3, pp. 43–62.
Noemi N. , T. Di M. , Tomaso A. (2016). Anomalous volatility scaling in high frequency financial data. Physica A: Statistical Mechanics and its Applications. Vol. 447. Pp. 434–445
Norris, J. R. (1998). Markov chains. Cambridge University Press
Ohlson, J. (1995). Earnings, Book Values, and Dividends in Equity Valuation. Contemporary Accounting Research. Vol. 11 (2) , pp. 661–87.
Ohlson, J. (1999). On Transitory Earnings. Review of Accounting Studies. Vol. 4, pp. 145–62.
Pearson, K. (1905). The Problem of the Random Walk. Nature. 72, pp. 294.
Pope, F. P. and P. Wang (2005). Earnings Components, Accounting Bias and Equity Valuation. Review of Accounting Studies. Vol. 10, pp. 387–407.
Radzicki, M. J. and Taylor, R. A. (2008). Origin of System Dynamics: Jay W. Forrester and the History of System Dynamics. U. S. Department of Energy's Introduction to System Dynamics.
Repenning, N. P. (1999). Resource dependence in product development improvement efforts. MIT Sloan School of Management Department of Operations Management/System Dynamics Group.
Repenning, N. P. (2001). Understanding firefighting in new product development. The Journal of Product Innovation Management. Vol. 18 (5). Pp. 285–300.
Robertson, R. ; Combs, A. (1995). Chaos theory in Psychology and Life Sciences. LEA, Inc. p. 83.
Robinson, J. (1982). Shedding Darkness. Cambridge Journal of Economics. Vol. 6 (3). Pp. 295-296.
Schlick, T. (2002). Molecular Modeling and Simulation. Springer. p. 480.
Schutz, W. (1958). FIRO: A Three-Dimensional Theory of Interpersonal Behavior. New York. Rinehart.
Segnon, M. K. ; Lux, T. (2013) multifractal models in finance: Their origin, properties, and applications. Working paper. No. 1860, University Kiel.
Shreve, S. E (2008). Stochastic Calculus for Finance II: Continuous Time Models. Springer.
Smale S. (1967). Differentiable dynamical systems. Bulletin of the American Mathematical Society. 73 (6). pp. 747–817.
Sniedovich, M. (2006). Dijkstra’s algorithm revisited: the dynamic programming connexion. Journal of Control and Cybernetics. 35 (3): 599–620.
Sniedovich, M. (2010). Dynamic Programming: Foundations and Principles. Taylor & Francis.
Stark, A. , (1997). Linear Information Dynamics, Dividend Irrelevance, Corporate Valuation and the Clean Surplus Relationship. Accounting and Business Research. 27, 3. pp. 219-228.
Stark, H. ; Woods, J. (2002). Probability and Random Processes with Applications to Signal Processing (3rd Ed. ). New Jersey: Prentice Hall.
Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. New York: McGraw Hill.
Sterman, John D. (2001). System dynamics modeling: Tools for learning in a complex world. California management review. 43 (4). Pp. 8–25
Stokey, N. , R. Lucas, and E. Prescott (1989). Recursive Methods in Economic Dynamics. Boston, MA: Harvard University Press.
Strogatz, S. H. (2001). Nonlinear dynamics and chaos: with applications to physics, biology and chemistry. Perseus publishing.
Taylor W. E. (1988). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, With an Introduction to the Problem of Three Bodies (Fourth edition of 1936 with foreword by Sir William McCrea ed. ). Cambridge University Press. p. Chapter 1, p. 1.
Taylor, J. R. (2005). Classical Mechanics. University Science Books.
Theobald T. (2015). Agent-based risk management – a regulatory approach to financial markets. Journal of Economic Studies. Vol. 42 Issue: 5, pp. 780 – 820.
Theobald T. (2015). Agent-based risk management – a regulatory approach to financial markets. Journal of Economic Studies. Vol. 42 Issue: 5, pp. 780 – 820
Timoshenko, S. ; Young, D. H. (1956). Engineering mechanics. McGraw Hill.
Trigueiros, D. (2006). Neural Networks in Accounting and Finance Research.
Tsekov, R. (2013). Brownian Markets. Chinese Physics Letters. Vol. 30 (8).
Van Vugt, M. ; Schaller, M. (2008). Evolutionary approaches to group dynamics: An introduction. Group Dynamics: Theory, Research, and Practice. Vol. 12, No. 1. Pp. 1-6
Vieira, A. ; Castillo, P. A. ; Merelo, J. J. (2003). Application of HLVQ and G-Prop Neural Networks to the Problem of Bankruptcy Prediction. Conference about: Artificial Neural Nets Problem Solving Methods
Webster-dictionary. org (2015). Online available.
Wright, T. W. (1896). Elements of Mechanics Including Kinematics, Kinetics and Statics: with applications. p. 85.
Yang, L. (2014). Population Dynamics. Davis: UC Davis.
Zaslavsky, G. M. (2008). Hamiltonian Chaos and Fractional Dynamics. Oxford University Press. 432 pages
Zheng, X; Chen, B. M. (2012). Modeling and forecasting of stock markets under a system adaptation framework. Journal System Science Complex. Vol. 25. Pp. 641–674.