حسابرسی در عصر هوش مصنوعی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشیار، گروه حسابداری، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا(س)، تهران، ایران.

2 گروه حسابداری، دانشکده علوم اقتصادی و اجتماعی، دانشگاه الزهرا(س)، تهران، ایران.

10.22051/jaasci.2024.47350.1862

چکیده

هدف: این مقاله روند تکامل هوش مصنوعی و توسعه آن در حسابرسی را با توجه به مطالعات انجام شده، ترسیم می‌کند، همچنین اهمیت استفاده حسابرسان از سیستم های هوشمند مصنوعی در دستیابی به اظهارنظر حرفه­ای را مورد بحث قرار می دهد.
روش: برای نگارش این مقاله به مرور مقالات و منابع معتبر و در دسترس پرداخته شده است. باتوجه به اینکه نقطه آغازین پیدایش حوزه­های حسابرسی و هوش مصنوعی مربوط به دهه 1990 می­باشد بازه زمانی جهت انتخاب مقالات  دهه 1990 تا کنون می­باشد.
یافتهها: نتایج پژوهش حاکی از این است در عصر هوش مصنوعی استفاده از حسابرسی سنتی با مشکلات اساسی همراه بوده و کارآمد نمی باشد، در نتیجه بر ضرورت همگام شدن با هوش مصنوعی برای کاهش این مشکلات اساسی تاکید دارند.
نتیجهگیری: مطالعات انجام شده نشان می­دهد که انقلاب هوش مصنوعی با تحولات چشمگیری در حرفه حسابرسی همراه است. تحولاتی که سبب شده حرفه حسابرسی در شرایط حساسی قرار گیرد و فناوری هوش مصنوعی حرفه حسابرسی را متحول خواهد کرد. هوش مصنوعی نه تنها نیاز به حسابرسی را از بین نمی­برد بلکه با توجه به پیچیدگی­های تعاملات امروزه، اهمیت آن را دو چندان می­کند. کاربرد هوش مصنوعی در حرفه حسابرسی هنوز به شدت نوپا است و لازم است به طور ویژه مورد توجه پژوهشگران و به­خصوص پژوهشگران داخلی قرار گیرد.
دانشافزایی: مطالعات پیشین به گونه ای ترکیب شده اند که به غنای ادبیات منسجم در رابطه با مزایا، معایب چالش‌ها و فرصت‌ها و هم‌افزایی هوش مصنوعی در حسابرسی کمک می‌کند و برضرورت کاربرد هوش مصنوعی در حسابرسی در عصر انقلاب هوش مصنوعی تأکید دارد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Auditing in the Age of Artificial Intelligence

نویسندگان [English]

  • Gholamreza Soleimani Amiri 1
  • sara mohammadi sedaran 2
1 Associate Prof. Department of Accounting, Faculty of Social and Economic Sciences, Al-Zahra University, Tehran, Iran
2 Department of Accounting, Faculty of Social Sciences and Economic, AlZahra University, Tehran, Iran
چکیده [English]

Purpose: This article outlines the evolution of artificial intelligence and its development in auditing based on the studies conducted. It also discusses the importance of the use of artificial intelligence systems by auditors in obtaining professional opinions.
Method: In order to write this article, a review of available and reliable articles and sources was undertaken. It was taken into account that the emergence of the fields of audit and artificial intelligence dates back to the 1990s. The time frame for the selection of articles extends from the 1990s to the present day
Results: The results of the study show that in the age of artificial intelligence, the application of traditional auditing is associated with fundamental problems and is not efficient. Therefore, they emphasize the need for synchronization with artificial intelligence to reduce these fundamental problems.
Conclusion: The studies conducted show that the artificial intelligence revolution is associated with significant changes in the auditing profession. The developments that have led to the audit profession finding itself in a critical situation, and the technology of artificial intelligence, will revolutionize the audit profession. Artificial intelligence not only does not make auditing redundant, but also doubles its importance due to the complexity of today's interactions. This is why the use of artificial intelligence in auditing is still in its infancy and it is necessary to pay special attention to researchers, especially local researchers.
Contribution: Previous studies have been combined in a way that contributes to the wealth of coherent literature on the benefits, drawbacks, challenges, opportunities and synergies of artificial intelligence in auditing and it emphasizes the need for the use of artificial intelligence in auditing in the age of the artificial intelligence revolution.

کلیدواژه‌ها [English]

  • Auditing
  • artificial intelligence
  • Synergy of artificial and human intelligence
تختائی، ‌نصراله؛ شلال‌نژاد، محمد. (1402). هوش مصنوعی و بلاکچین در حسابداری و حسابرسی. چشم انداز حسابداری و مدیریت، (6)،224-229.
حیدری، مهدی؛ امیری، حمیدرضا. (1401). بررسی قدرت مدل‌های مبتنی بر هوش مصنوعی در پیش‌بینی روند قیمت سهام بورس اوراق بهادار تهران. تحقیقات مالی، 24(4)، 602-623.‎
صدیقی،عبدالمجید؛ربانی طاها؛باباجانی،جعفر.(1402).شناسایی پیشران­های مؤثر بر آینده جایگاه حرفه حسابرسی در ایران.حسابداری و منافع اجتماعی.13(3)،1-36.
عبدی گلزار، بهمن ؛ علیزاده بی پناه،مسعود. (1401). تاثیر آلودگی زیست محیطی بر کیفیت حسابرسی. حسابداری و منافع اجتماعی. 12(3)،183-200.
قلی­زاده سالطه، توحید؛ اقبال‌نیا، آقابابائی. (1398). پیش‌بینی ورشکستگی با مدل یادگیری ماشین سریع مبتنی بر کرنلِ بهینه‌شده با الگوریتم گرگ خاکستری. تحقیقات مالی, 21(2)، 187-212.‎
مریداحمدی بزدی،زهرا؛ حاجیها،زهره. (1400). نقش هوش مصنوعی در تحقق اهداف حسابرسی صورتهای مالی: پیامدها و راهکارها. چشم انداز حسابداری و مدیریت، 4(51), 127-135.‎
هاشمی کوچکسرایی،سید محمدحسن؛ داداشی، ایمان؛ یحیی‎ زاده فر؛ غلام نیا روشن. (1399). تبیین نقش معیارهای عملکردی و حاکمیتی در تعیین ارزش شرکت با رویکرد مبتنی بر هوش مصنوعی. تحقیقات مالی، 22(1)، 131-147.‎
Abdi Golzar, B; & Alizadeh Bipanah, M. (2022). The impact of environmental pollution on audit quality. Accounting and Social Interests, 12(3), 183-200. . [In Persian]
Abdolmohammadi, M. J. (1987). Decision support and expert systems in auditing: A review and research directions. Accounting and Business Research, 17(66), 173-185.‏
Abdulameer, M; Mansoor, M. M; Alchuban, M; Rashed, A; Al-Showaikh, F; & Hamdan, A. (2022). The Impact of Artificial Intelligence (AI) on the Development of Accounting and Auditing Profession. In Technologies, Artificial Intelligence and the Future of Learning Post-COVID-19: The Crucial Role of International Accreditation (pp. 201-213). Cham: Springer International Publishing.
Abiodun, O. I; Jantan, A; Omolara, A. E; Dada, K. V; Mohamed, N. A; & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11),152-168.
Adiloglu, B; & Gungor, N. (2019). The impact of digitalization on the audit profession: a review of Turkish independent audit firms. Journal of Business Economics and Finance, 8(4), 209-214.
Aghion, P; Jones, B. F; & Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda (pp. 237-282). University of Chicago Press.‏
Agnew, H. (2016). Auditing: Pitch battle. Financial Times (May 9). Available at: https://www.ft.com/content/268637f6-15c8-11e6-9d98-00386a18e39d
Ajao, O. S; Olamide, J. O; & Temitope, A. A. (2016). Evolution and development of auditing. Unique Journal of Business Management Research3(1), 032-040.‏
Akerkar, R. (2019). Artificial intelligence for business. Springer,1-92.‏
Aksoy, T; & Gurol, B. (2021). Artificial intelligence in computer-aided auditing techniques and technologies (CAATTs) and an application proposal for auditors. In Auditing Ecosystem and Strategic Accounting in the Digital Era: Global Approaches and New Opportunities (pp. 361-384). Cham: Springer International Publishing.
Akula, R; & Garibay, I. (2021). Audit and assurance of AI algorithms: a framework to ensure ethical algorithmic practices in artificial intelligence. arXiv preprint arXiv:2107.14046.‏
Alareeni, B; & Hamdan, A. (2022). The Impact of Artificial Intelligence on Accounting and Auditing in Light of the COVID-19 Pandemic. In Artificial Intelligence and COVID Effect on Accounting (pp. 3-7). Singapore: Springer Nature Singapore.‏
Albawwat, I; & Frijat, Y. (2021). An analysis of auditors’ perceptions towards artificial intelligence and its contribution to audit quality. Accounting, 7(4), 755-762.‏’
Albus, J. S. (1991). Outline for a theory of intelligence. IEEE transactions on systems, man, and cybernetics, 21(3), 473-509.‏
Al-Sayyed, S; Al-Aroud, S; & Zayed, L. (2021). The effect of artificial intelligence technologies on audit evidence. Accounting, 7(2), 281-288.
Anastasi, A. (1992). What counselors should know about the use and interpretation of psychological tests. Journal of Counseling & Development, 70(5), 610-615.‏
Anderson, M. (2006). Intelligence. MS Encarta online encyclopedia.
Baldwin, A. A; Brown, C. E; & Trinkle, B. S. (2006). Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intelligent Systems in Accounting, Finance & Management: International Journal, 14(3), 77-86.
Bannerjee, G; Sarkar, U; Das, S; & Ghosh, I. (2018). Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 7(3), 1-6.‏
Bholat, D; & Susskind, D. (2021). The assessment: artificial intelligence and financial services. Oxford Review of Economic Policy, 37(3), 417-434.‏
Bingham, W. V. (1937). Aptitudes and aptitude testing. Harper & Brothers, New York, 1937.
Brown, C. E; & Murphy, D. S. (1990). The Use of Auditing Expert Systems in Public Accounting. Journal of Information Systems, 4(3),63-73.
Brown, R. (1962). Changing Audit Objectives and Techniques. Accounting Review37(4).‏
Butaka, G. (2022). The Evolution of Audit in the Wake of the Pandemic. available At: https://www.isaca.org/resources/isaca-journal/issues/2022/volume-1/the-evolution-of-audit-in-the-wake-of-the-pandemic
Byrnes, P. E; Al-Awadhi, A; Gullvist, B; Brown-Liburd, H; Teeter, R; Warren Jr, J. D; & Vasarhelyi, M. (2018). Evolution of auditing: From the traditional approach to the future audit. In Continuous auditing: Theory and application (pp. 285-297). Emerald Publishing Limited.‏
Calderon, T. G; & Cheh, J. J. (2002). A roadmap for future neural networks research in auditing and risk assessment. International Journal of Accounting Information Systems, 3(4), 203-236.‏
Chen, L; Chen, P; & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278.
Chopra, R; & Sharma, G. D. (2021). Application of artificial intelligence in stock market forecasting: a critique, review, and research agenda. Journal of risk and financial management, 14(11), 526,182-201.
Coderre, D. (2006). A continuous view of accounts: Royal Canadian Mounted Police auditors ride to the rescue of a complex accounts payable function. Internal Auditor, 63(2), 25-29.‏
Cui, M; & Zhang, D. Y. (2021). Artificial intelligence and computational pathology. Laboratory Investigation, 101(4), 412-422.‏
Dalal, C; & Comm, B. (1999). Using an expert system in an audit: a case study of fraud detection. IT Audit, 2.‏
Dalwai, T. A. R; Madbouly, A; & Mohammadi, S. S. (2022). An investigation of artificial intelligence application in auditing. In Artificial intelligence and COVID effect on accounting (pp. 101-114). Singapore: Springer Nature Singapore.‏
Delipetrev, B; Tsinaraki, C; & Kostic, U. (2020). Historical evolution of artificial intelligence,1-34.
Dellermann, D; Ebel, P; Söllner, M; & Leimeister, J. M. (2019). Hybrid intelligence. Business & Information Systems Engineering, 61, 637-643.‏
Devagiri, J. S; Paheding, S; Niyaz, Q; Yang, X; & Smith, S. (2022). Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges. Expert Systems with Applications, 118002.‏
Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4), 4377-4683.
Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.‏
Ferreira, F. G; Gandomi, A. H; & Cardoso, R. T. (2021). Artificial intelligence applied to stock market trading: a review. IEEE Access, 9, 30898-30917.‏
Fitzpatrick, L. (1939). The story of bookkeeping, accounting, and auditing. Accounting Digest217.‏
Flasiński, M. (2016). Introduction to artificial intelligence. Springer,1-304.
Gardner, H. (1993). Frames of Mind–the theory of multiple intelligences Fontana. Gardner, W. and Abu Libde, A.(1995). Professional development schools: How well do they travel, 303-315.‏
Gholizadeh Salteh, T; Eghbalnia, M; & Aghababaei, M. E. (2019). Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Financial Research Journal, 21(2), 187-212. . [In Persian]
Goertzel, B; & Wang, P. (Eds.). (2007). Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006 (Vol. 157). IOS Press,1-303.
Goralski, M. A; & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education18(1), 100330,159-183.‏
Greenman, C. (2017). Exploring the impact of artificial intelligence on the accounting profession. Journal of Research in Business, Economics and Management, 8(3), 1451,97-115.‏
Grewal, D. S. (2014). A critical conceptual analysis of definitions of artificial intelligence as applicable to computer engineering. IOSR Journal of Computer Engineering16(2), 9-13.‏
Gultom, J. B; Murwaningsari, E; Umar, H; & Mayangsari, S. (2021). Reciprocal use of artificial intelligence in audit assignments. Journal of Accounting, Business and Finance Research, 11(1), 9-20.‏
Gupta, R; Srivastava, D; Sahu, M; Tiwari, S; Ambasta, R. K; & Kumar, P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity, 25, 1315-1360.‏
Haenlein, M; & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review, 61(4), 5-14.
Hall, W; & Pesenti, J. (2017). Growing the artificial intelligence industry in the UK.‏
Hasan, A. R. (2021). Artificial Intelligence (AI) in accounting & auditing: A Literature review. Open Journal of Business and Management, 10(1), 440-465.‏
Hashemi Kochaksaraei, S. M. H; Dadashi, I; Yahyazadehfar, M; & Gholamnia Roshan, H. R. (2020). The Role of Performance and Governance Criteria in Determining the Price of Shares with an Artificial Intelligence-based Approach. Financial Research Journal, 22(1), 131-147. . [In Persian]
Hcltech. (2020). What are the advantages of Artificial Intelligence? Retrieved from Hcltech: https://www.hcltech.com/technology-qa/what-are-the-advantages-of-artificial-intelligence
Heidari, M; & Amiri, H. (2022). Inspecting the Predictive Power of Artificial Intelligence Models in Predicting the Stock Price Trend in Tehran Stock Exchange. Financial Research Journal, 24(4), 602-623. . [In Persian]
Holzinger, A; Langs, G; Denk, H; Zatloukal, K; & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312,385-407.
Horowitz, M. C; Allen, G. C; Saravalle, E; Cho, A; Frederick, K; & Scharre, P. (2018). Artificial intelligence and international security. Center for a New American Security.
Hu, K. H; Chen, F. H; Hsu, M. F; & Tzeng, G. H. (2021). Identifying key factors for adopting artificial intelligence-enabled auditing techniques by joint utilization of fuzzy-rough set theory and MRDM technique. Technological and Economic Development of Economy, 27(2), 459-492.
Huang, F; No, W. G; Vasarhelyi, M. A; & Yan, Z. (2022). Audit data analytics, machine learning, and full population testing. The Journal of Finance and Data Science, 8, 138-144.‏
Huang, M. H; & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50.‏
ICAEW. 2016. Artificial Intelligence and the Future of Accountancy. Available online: https://www.icaew.com/-/media/corporate/files/technical/information-technology/thoughtleadership/artificial-intelligence-report.ashx (accessed on 6 June 2022).
Ishak, W. H. W; & Siraj, F. (2002). Artificial intelligence in medical application: An exploration. Health Informatics Europe Journal, 16.‏
Joiner, I. A. (2018). Artificial Intelligence. Emerging Library Technologies, 1–22. doi:10.1016/b978-0-08-102253-5.00002-2.
Jordan, M. I. (2019). Artificial intelligence—the revolution hasn’t happened yet. Harvard Data Science Review, 1(1), 1-9.‏
Koskivaara, E. (2000). Artificial neural network models for predicting patterns in auditing monthly balances. Journal of the operational research society, 51(9), 1060-1069.‏
Kubassova, O; Shaikh, F; Melus, C; & Mahler, M. (2021). History, current status, and future directions of artificial intelligence. Precision Medicine and Artificial Intelligence, 1-38.‏
Kurzweil, R. (2000). The age of spiritual machines: When computers exceed human intelligence. Penguin.‏
Liu, Z; & Zeng, X. (2021). Hybrid intelligence in big data environment: concepts, architectures, and applications of intelligent service. Data and Information Management, 5(2), 262-276.‏
Loureiro, S. M. C; Guerreiro, J; & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of business research, 129, 911-926.‏
Lu, H; Li, Y; Chen, M; Kim, H; & Serikawa, S. (2018). Brain intelligence: go beyond artificial intelligence. Mobile Networks and Applications, 23, 368-375.‏
Lu, P; Chen, S; & Zheng, Y. (2012). Artificial intelligence in civil engineering. Mathematical Problems in Engineering, 2012.‏
Luxton, D. D. (2016). An Introduction to Artificial Intelligence in Behavioral and Mental Health Care. Artificial Intelligence in Behavioral and Mental Health Care, 1–26. doi:10.1016/b978-0-12-420248-1.00001-5.
Marr, B. (2018). What is artificial intelligence and how will it change our world? Retrieved from https://www.bernardmarr.com/default.asp?contentID=963.
McPherson, S. S. (2017). Artificial intelligence: building smarter machines. Twenty-First Century Books™.‏
Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence, 267, 1-38.‏
Mills, M. (2016). Artificial intelligence in law: The state of play 2016. Thomson Reuters Legal executive Institute,1-6.
Minkkinen, M; Laine, J; & Mäntymäki, M. (2022).Continuous auditing of artificial intelligence: a conceptualization and assessment of tools and frameworks. Digital Society, 1(3), 21,1-27
Moridahmadi, Z; & Hajiha, Z. (2022). The role of artificial intelligence in achieving the objectives of auditing financial statements: Implications and solutions. Journal of Accounting and Management Vision4(51), 127-135. [In Persian]
Munoko, I; Brown-Liburd, H. L; & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167, 209-234.
Murcia, F. D. R; De Souza, F. C; & Borba, J. A. (2008). Continuous auditing: A literature review. Revista Organizações em contexto, 4(7), 1-17.‏
Naqvi, A. (2020). Artificial intelligence for audit, forensic accounting, and valuation: a strategic perspective. John Wiley & Sons,1-9.
Noordin, N. A; Hussainey, K; & Hayek, A. F. (2022). The use of artificial intelligence and audit quality: An analysis from the perspectives of external auditors in the UAE. Journal of Risk and Financial Management, 15(8), 339.‏
Nti, I. K; Adekoya, A. F; Weyori, B. A; & Nyarko-Boateng, O. (2022). Applications of artificial intelligence in engineering and manufacturing: A systematic review. Journal of Intelligent Manufacturing, 33(6), 1581-1601.‏
Olagunju, A. O; & Owolabi, S. A. (2021). Historical evolution of audit theory and practice. International Journal of Management Excellence (ISSN: 2292-1648)16(1), 2252-2259.‏
O'Leary, D. E. (2003). Auditor environmental assessments. International Journal of Accounting Information Systems, 4(4), 275-294.‏
Omoteso, K. (2012). The application of artificial intelligence in auditing: Looking back to the future. Expert Systems with Applications, 39(9), 8490-8495.‏
Omoteso, K; Patel, A; & Scott, P. (2010). Information and communications technology and auditing: current implications and future directions. International Journal of Auditing, 14(2), 147-162
Ouyang, F; & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020,168-189.‏
Parkes, D. C; & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267-272.‏
Porter, B; Simon, J; & Hatherly, D. (2014). Principles of external auditing. John Wiley & Sons.‏
Powell, J; & Hopkins, M. (2015). Understanding Linked Data. A Librarian’s Guide to Graphs, Data and the Semantic Web, 65–74. doi:10.1016/b978-1-84334-753-8.00008-7.
Rai, N. (2022). Why ethical audit matters in artificial intelligence?. AI and Ethics, 2(1), 209-218.‏
Raphael. (2015). How Artificial Intelligence Can Boost Audit Quality. http://ww2.cfo.com/auditing/2015/06/artificial-intelligence-can-boost-auditquality/
Rashwan, A. R. M. S; & Alhelou, E. M. (2020). The impact of using artificial intelligence on the accounting and auditing profession in light of the Corona pandemic. Journal of Advance Research in Business Management and Accounting, 6(9), 97-122.‏
Rezaee, Z; Elam, R; & Sharbatoghlie, A. (2001). Continuous auditing: the audit of the future. Managerial Auditing Journal, 16(3), 150-158.‏
Robila, M; & Robila, S. A. (2020). Applications of artificial intelligence methodologies to behavioral and social sciences. Journal of Child and Family Studies, 29, 2954-2966.‏
Russell, S; & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson Education Limited,1-1151.‏
Sánchez-Serrano, J. R; Alaminos, D; García-Lagos, F; & Callejón-Gil, A. M. (2020). Predicting audit opinion in consolidated financial statements with artificial neural networks. Mathematics, 8(8), 1288,116-130.‏
Schreyer, M; Gierbl, A. S; Ruud, F; & Borth, D. (2022). Artificial Intelligence Enabled Audit Sampling-Learning to draw representative and interpretable audit samples from large-scale journal entry data. Expert Focus, 96(2), 106-112.‏
Schreyer, M; Sattarov, T; Borth, D; Dengel, A; & Reimer, B. (2017). Detection of anomalies in large scale accounting data using deep autoencoder networks. arXiv preprint arXiv:1709.05254,268-296.
Schreyer, M; Sattarov, T; Schulze, C; Reimer, B; & Borth, D. (2019). Detection of accounting anomalies in the latent space using adversarial autoencoder neural networks. arXiv preprint arXiv:1908.00734,182-204.‏
Schwendicke, F. A; Samek, W; & Krois, J. (2020). Artificial intelligence in dentistry: chances and challenges. Journal of dental research, 99(7), 769-774.‏
Science ABC. (2022). What Is Moravec’s Paradox? Available At: https://www.scienceabc.com/innovation/what-is-moravecs-paradox-definition.html
Sedighi, A; Rabbani, T; & Babajani, J. (2023). Identification of Drivers Affecting the Future Social Status of the Auditing Profession in Iran. Accounting and Social Interests, 13(3), 1-36. . [In Persian]
Shabani, N; Munir, A; & Mohanty, S. P. (2022). A Study of Big Data Analytics in Internal Auditing. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 362-374). Springer International Publishing.‏
Simonton, D. K. (2003). An interview with Dr. Simonton. In J. A. Plucker, editor, Human intelligence: Historical influences, current controversies, teaching resources. http://www.indiana.edu/~intell.
Sternberg, R. J. (2003). An interview with Dr. Sternberg. In J. A. Plucker, editor, Human intelligence: Historical influences, current controversies, teaching resources. http://www.indiana.edu/~intell.
Sternberg, R. J. (Ed.). (2000). Handbook of intelligence. Cambridge University Press.‏
Sun, T. (2018). Deep learning applications in audit decision making (Doctoral dissertation, Rutgers University-Graduate School-Newark),1-172.
Sun, T. (2019). Applying deep learning to audit procedures: An illustrative framework. Accounting Horizons, 33(3), 89-109.‏
Sun, T; & Vasarhelyi, M. A. (2018). Embracing textual data analytics in auditing with deep learning. International Journal of Digital Accounting Research, 18.‏
Surden, H. (2019). Artificial intelligence and law: An overview. Georgia State University Law Review, 35, 19-22.‏
Takhtaei, N; Shalalnezhad, A; & Shalalnezhad, M. (2023). Artificial intelligence and blockchain in accounting and auditing. Journal of Accounting and Management Vision, 6(82), 224-229. [In Persian]
Teck-Heang, L. E. E; & Ali, A. M. (2008). The evolution of auditing: An analysis of the historical development. Journal of Modern Accounting and auditing4(12), 1.‏
Vlačić, B; Corbo, L; e Silva, S. C; & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187-203.‏
Walters, R; & Novak, M. (2021). Artificial Intelligence and Law. In Cyber Security, Artificial Intelligence, Data Protection & the Law (pp. 39-69). Singapore: Springer Singapore.‏
Xu, Y; Liu, X; Cao, X; Huang, C; Liu, E; Qian, S; ... & Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4),
1-11.‏
Zemankova, A. (2019, December). Artificial intelligence in audit and accounting: development, current trends, opportunities and threats-literature review. In 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO) (pp. 148-154). IEEE.‏
Zhang, C; & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224, 164-185.
Zhang, Z. (2021, September). Research on the Application of Artificial Intelligence Technology in Audit Under the Background of Big Data. In Journal of Physics: Conference Series (Vol. 2033, No. 1, p. 012150). IOP Publishing,68-74.
Zhang, Z; & Wang, Z. (2021). Design of financial big data audit model based on artificial neural network. International Journal of System Assurance Engineering and Management, 1-10.‏
Zhang, Z; Ning, H; Shi, F; Farha, F; Xu, Y; Xu, J; ... & Choo, K. K. R. (2022). Artificial intelligence in cyber security: research advances, challenges, and opportunities. Artificial Intelligence Review, 1-25.‏
Zheng, N. N; Liu, Z. Y; Ren, P. J; Ma, Y. Q; Chen, S. T; Yu, S. Y; ... & Wang, F. Y. (2017). Hybrid-augmented intelligence: collaboration and cognition. Frontiers of Information Technology & Electronic Engineering, 18(2), 153-179.‏